Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.

Identifieur interne : 002245 ( Main/Exploration ); précédent : 002244; suivant : 002246

Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.

Auteurs : David U. Gorkin [États-Unis] ; Dongwon Lee ; Xylena Reed ; Christopher Fletez-Brant ; Seneca L. Bessling ; Stacie K. Loftus ; Michael A. Beer ; William J. Pavan ; Andrew S. Mccallion

Source :

RBID : pubmed:23019145

Descripteurs français

English descriptors

Abstract

We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.

DOI: 10.1101/gr.139360.112
PubMed: 23019145


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.</title>
<author>
<name sortKey="Gorkin, David U" sort="Gorkin, David U" uniqKey="Gorkin D" first="David U" last="Gorkin">David U. Gorkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dongwon" sort="Lee, Dongwon" uniqKey="Lee D" first="Dongwon" last="Lee">Dongwon Lee</name>
</author>
<author>
<name sortKey="Reed, Xylena" sort="Reed, Xylena" uniqKey="Reed X" first="Xylena" last="Reed">Xylena Reed</name>
</author>
<author>
<name sortKey="Fletez Brant, Christopher" sort="Fletez Brant, Christopher" uniqKey="Fletez Brant C" first="Christopher" last="Fletez-Brant">Christopher Fletez-Brant</name>
</author>
<author>
<name sortKey="Bessling, Seneca L" sort="Bessling, Seneca L" uniqKey="Bessling S" first="Seneca L" last="Bessling">Seneca L. Bessling</name>
</author>
<author>
<name sortKey="Loftus, Stacie K" sort="Loftus, Stacie K" uniqKey="Loftus S" first="Stacie K" last="Loftus">Stacie K. Loftus</name>
</author>
<author>
<name sortKey="Beer, Michael A" sort="Beer, Michael A" uniqKey="Beer M" first="Michael A" last="Beer">Michael A. Beer</name>
</author>
<author>
<name sortKey="Pavan, William J" sort="Pavan, William J" uniqKey="Pavan W" first="William J" last="Pavan">William J. Pavan</name>
</author>
<author>
<name sortKey="Mccallion, Andrew S" sort="Mccallion, Andrew S" uniqKey="Mccallion A" first="Andrew S" last="Mccallion">Andrew S. Mccallion</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23019145</idno>
<idno type="pmid">23019145</idno>
<idno type="doi">10.1101/gr.139360.112</idno>
<idno type="wicri:Area/PubMed/Corpus">001D44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D44</idno>
<idno type="wicri:Area/PubMed/Curation">001D44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D44</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C71</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001C71</idno>
<idno type="wicri:Area/Ncbi/Merge">000999</idno>
<idno type="wicri:Area/Ncbi/Curation">000999</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000999</idno>
<idno type="wicri:Area/Main/Merge">002270</idno>
<idno type="wicri:Area/Main/Curation">002245</idno>
<idno type="wicri:Area/Main/Exploration">002245</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.</title>
<author>
<name sortKey="Gorkin, David U" sort="Gorkin, David U" uniqKey="Gorkin D" first="David U" last="Gorkin">David U. Gorkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Dongwon" sort="Lee, Dongwon" uniqKey="Lee D" first="Dongwon" last="Lee">Dongwon Lee</name>
</author>
<author>
<name sortKey="Reed, Xylena" sort="Reed, Xylena" uniqKey="Reed X" first="Xylena" last="Reed">Xylena Reed</name>
</author>
<author>
<name sortKey="Fletez Brant, Christopher" sort="Fletez Brant, Christopher" uniqKey="Fletez Brant C" first="Christopher" last="Fletez-Brant">Christopher Fletez-Brant</name>
</author>
<author>
<name sortKey="Bessling, Seneca L" sort="Bessling, Seneca L" uniqKey="Bessling S" first="Seneca L" last="Bessling">Seneca L. Bessling</name>
</author>
<author>
<name sortKey="Loftus, Stacie K" sort="Loftus, Stacie K" uniqKey="Loftus S" first="Stacie K" last="Loftus">Stacie K. Loftus</name>
</author>
<author>
<name sortKey="Beer, Michael A" sort="Beer, Michael A" uniqKey="Beer M" first="Michael A" last="Beer">Michael A. Beer</name>
</author>
<author>
<name sortKey="Pavan, William J" sort="Pavan, William J" uniqKey="Pavan W" first="William J" last="Pavan">William J. Pavan</name>
</author>
<author>
<name sortKey="Mccallion, Andrew S" sort="Mccallion, Andrew S" uniqKey="Mccallion A" first="Andrew S" last="Mccallion">Andrew S. Mccallion</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="eISSN">1549-5469</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Chromatin Immunoprecipitation (methods)</term>
<term>E1A-Associated p300 Protein (genetics)</term>
<term>E1A-Associated p300 Protein (metabolism)</term>
<term>Enhancer Elements, Genetic</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation</term>
<term>Genes, Reporter</term>
<term>Genome, Human</term>
<term>Histones (metabolism)</term>
<term>Humans</term>
<term>Melanocytes (metabolism)</term>
<term>Mice</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Transcription Factors (metabolism)</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN ()</term>
<term>Animaux</term>
<term>Danio zébré</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes rapporteurs</term>
<term>Génome humain</term>
<term>Histone (métabolisme)</term>
<term>Humains</term>
<term>Immunoprécipitation de la chromatine ()</term>
<term>Intelligence artificielle</term>
<term>Mélanocytes (métabolisme)</term>
<term>Protéine p300-E1A (génétique)</term>
<term>Protéine p300-E1A (métabolisme)</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Éléments activateurs (génétique)</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>E1A-Associated p300 Protein</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>E1A-Associated p300 Protein</term>
<term>Histones</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéine p300-E1A</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Melanocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Histone</term>
<term>Mélanocytes</term>
<term>Protéine p300-E1A</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Artificial Intelligence</term>
<term>Enhancer Elements, Genetic</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation</term>
<term>Genes, Reporter</term>
<term>Genome, Human</term>
<term>Humans</term>
<term>Mice</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence d'ADN</term>
<term>Animaux</term>
<term>Danio zébré</term>
<term>Gènes rapporteurs</term>
<term>Génome humain</term>
<term>Humains</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Intelligence artificielle</term>
<term>Régulation de l'expression des gènes</term>
<term>Souris</term>
<term>Éléments activateurs (génétique)</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Beer, Michael A" sort="Beer, Michael A" uniqKey="Beer M" first="Michael A" last="Beer">Michael A. Beer</name>
<name sortKey="Bessling, Seneca L" sort="Bessling, Seneca L" uniqKey="Bessling S" first="Seneca L" last="Bessling">Seneca L. Bessling</name>
<name sortKey="Fletez Brant, Christopher" sort="Fletez Brant, Christopher" uniqKey="Fletez Brant C" first="Christopher" last="Fletez-Brant">Christopher Fletez-Brant</name>
<name sortKey="Lee, Dongwon" sort="Lee, Dongwon" uniqKey="Lee D" first="Dongwon" last="Lee">Dongwon Lee</name>
<name sortKey="Loftus, Stacie K" sort="Loftus, Stacie K" uniqKey="Loftus S" first="Stacie K" last="Loftus">Stacie K. Loftus</name>
<name sortKey="Mccallion, Andrew S" sort="Mccallion, Andrew S" uniqKey="Mccallion A" first="Andrew S" last="Mccallion">Andrew S. Mccallion</name>
<name sortKey="Pavan, William J" sort="Pavan, William J" uniqKey="Pavan W" first="William J" last="Pavan">William J. Pavan</name>
<name sortKey="Reed, Xylena" sort="Reed, Xylena" uniqKey="Reed X" first="Xylena" last="Reed">Xylena Reed</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Gorkin, David U" sort="Gorkin, David U" uniqKey="Gorkin D" first="David U" last="Gorkin">David U. Gorkin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002245 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002245 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23019145
   |texte=   Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23019145" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021